e_{g} symmetry over the two-to-three spherical admixture becomes apparent. This latter conclusion had been drawn from trial and error analysis of the experimental data; its confirmation in the projection $5(b)$ is purely a result of extrapolating the data, and here serves only as an example of the type of detail that could become recognizable if more data were available.

The error in the density for two-dimensional centrosymmetric projections depends differently on the standard error of the structure factors depending on whether $\sigma(F)$ is proportional to F or independent of it, though the difference does not amount to much in practical cases (Lipson \& Cochran, 1953). $\sigma(F)$ fluctuated somewhat in the polarized beam data mentioned here but for the present purposes it may be considered constant. For this case, Lipson \& Cochran (1953) give

$$
\sigma(\varrho)=\left[\pi S_{\max }^{2} / A_{c}\right]^{\frac{1}{2}} \sigma(F)
$$

where A_{c} is the area of the projected plane. If $\sigma(F)$ is taken to be constant at one per cent of the strongest structure factor, an overgenerous estimate, we find that $\sigma(\varrho)=0.034 \mu_{B} / \AA^{2}$, which is approximately onehalf the spacing of the contours in $5(a)$.

Conclusion

It may be concluded that, although termination and observational errors are not completely removed from current projections of unpaired electron densities, over-all features are nevertheless recognizable in sufficient detail to give reliable information about the symmetry of the unpaired electron distribution. Improvement can of course be made by collecting three-
dimensional data, as Shull \& Yamada (1961) have done for Fe , though this will be more advantageous in cases where the structure is of enough complexity that superposition in the projection is a real problem. In cases such as discussed here, the obvious next step would be to extend the measurements to higher scattering angles so as to improve the resolution.

During this work the author had numerous and valuable discussions with Dr R. Nathans and Dr H. A. Alperin. Thanks are also due to Dr B. C. Frazer for commenting on the manuscript.

References

Alperin, H. A. (1961). International Conference on Magnetism and Crystallography, Kyoto, Japan.
Carpenter, G. B. (1960). J. Chem. Phys. 32, 525.
Hovi, V. \& Pautamo, Y. (1960). Ann. Acad. Sci. Fenn. $A V I$, no. 53.
Ibers, J. A. (1960). J. Chem. Phys. 33, 299.
James, R. W. (1954). The Optical Principles of the Diffraction of X-rays, p. 400. London: Bell.
Lipson, H. \& Cochran, W. (1953). The Determination of Crystal Structures, p. 288. London: Bell.
Nathans, R. (1960). J. Appl. Phys. 31, 350 S .
Nathans, R., Shull, C. G., Shirane, G. \& Andresen, A. (1959). J. Phys. Chem. Solids, 10, 138.

Pickart, S. J. \& Nathans, R. (1961). Phys. Rev. 123, 1163.

Shull, C. G. \& Yamada, Y. (1961). International Conference on Magnetism and Crystallography, Kyoto, Japan.
Weiss, R. J. \& Freeman, A. J. (1959). J. Phys. Chem. Solids, 10, 147.

Acta Cryst. (1963). 16, 177

The Structure of Aluminum Tetroxycarbide

By G. A. Jeffrey and M. Slaughter*
The Crystallography Laboratory, The University of Pittsburgh, Pittsburgh 13, Pa., U.S.A.

(Received 29 March 1962)
Aluminum tetroxycarbide, $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$, is a high temperature reaction product in the aluminum oxide carbide system. Its structure has been determined by single crystal analysis of three-dimensional $\mathrm{Cu} K \alpha$ data. The structure was solved from the Patterson synthesis, and refined by differential Fourier synthesis methods.

The structure is based on $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedra which share corners and edges. The unusual feature of the structure is a chain of tetrahedra which are linked alternately by sharing edges and corners. The observed Al-O bond lengths range from 1.71 to $1.87 \AA$, the Al-C from 1.91 to $1.98 \AA$, with standard deviations of $0.01 \AA$. There are two short non-bonded distances associated with the shared edge of the tetrahedra, Al … Al $2 \cdot 63 \AA$, and $\mathrm{O} \cdots$. . $2 \cdot 53 \AA$.

Introduction

Aluminum tetroxycarbide, $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$, was first recognized by Foster, Long \& Hunter (1956) as a chemically

[^0]distinct phase formed by high temperature reaction at about $1800^{\circ} \mathrm{C}$. in the aluminum oxide and carbide system. The other phases identified were $\delta-\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Al}_{2} \mathrm{CO}$ and $\mathrm{Al}_{4} \mathrm{C}_{3}$. The conditions for the formation of $\delta-\mathrm{Al}_{2} \mathrm{O}_{3}$ by high temperature reactions have been dis-

Table 1. X-ray powder data for $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$

Powder data (Foster, Long \& Hunter, 1956) Single crystal da			
d_{o}	I_{0}	$d_{c}(\AA)$	$h k l$
-	-	$4 \cdot 774$	(110)
-	-	$4 \cdot 561$	(002)
-	-	$4 \cdot 269$	(020)
$4 \cdot 22$	100	$4 \cdot 230$	(111)
$3 \cdot 87$	90	3.866	(021)
$3 \cdot 30$	70	$3 \cdot 298$	(112)
$3 \cdot 11$	80	3.116	(022)
-	-	$2 \cdot 880$	(200)
$2 \cdot 57$	70	$2 \cdot 565$	(113)
-	-	$2 \cdot 551$	(130)
$2 \cdot 48$	50	$2 \cdot 476$	(023)
-	-	$2 \cdot 456$	(131)
$2 \cdot 43$	50	$2 \cdot 435$	(202)
-	-	$2 \cdot 387$	(220)
$2 \cdot 32$	70	$2 \cdot 310$	(221)
-	-	$2 \cdot 280$	(004)
$2 \cdot 23$	20	$2 \cdot 227$	(132)
-	-	$2 \cdot 115$	(222)
-	-	$2 \cdot 134,2 \cdot 078$	(040), (041)
$2 \cdot 02$	30	2.057, $2 \cdot 011$	(114), (024)
$1 \cdot 96$	50	1.954	(133)
-	-	$1 \cdot 933$	(042)
1.88	20	1-877, 1.873	(223), (310)
1.84	20	1.835	(311)
1.78	10	1.788	(204)
1•73	10	1-747, 1-732	(043), (312)
-	-	$1 \cdot 715,1.704$	(240), (115)
-	-	1.700	(134)
1-68	30	1-685, 1-677	(241), (025)
1.65	20	1.648	(224)
-	-	$1 \cdot 637$	(150)
1-61	30	1-611, 1-605	(151), (242)
-	-	1-594, 1-592	(313), (330)
$1 \cdot 06$	20	$1 \cdot 568,1 \cdot 558$	(331), (044)
-	-	$1 \cdot 541$	(152)
-	-	$1 \cdot 520$	(006)
1.49	60	$1 \cdot 503,1 \cdot 494,1 \cdot 484$	(332), (243), (135)
$1 \cdot 45$	70	$\{1 \cdot 449,1 \cdot 448$	(225), (116)
1	7	(1-447, 1-441	(314), (153)
-	-	1.440	(400)
-	-	$1 \cdot 432$	(026)
-	-	1-423	(060)
$1 \cdot 41$	30	$1 \cdot 410,1 \cdot 406$	(333), (061)
$1 \cdot 39$	20	$1 \cdot 387$	(045)
-	-	$1 \cdot 373$	(402)
-	-	1-370	(244)
1-36	30	$1 \cdot 364,1 \cdot 358$	(420), (062)
-	-	1-349	(421)
$1 \cdot 34$	30	1-344	(206)
-	-	$1 \cdot 330$	(154)
1-31	40	$\left\{\begin{array}{l}1 \cdot 307,1 \cdot 307 \\ 1 \cdot 306,1 \cdot 305\end{array}\right.$	(315), (422)
1.98	40	(l-306, $1 \cdot 305$	(136), (334)
$1 \cdot 28$	20	1-288, 1-282	(063), (226)
-	-	$1 \cdot 376,1 \cdot 276$	(350), (260)
$1 \cdot 26$	20	$\{1 \cdot 263,1 \cdot 263$	(261), (351)
1.26	20	$\{1.257$	(117)
$1 \cdot 24$	40	$\{1 \cdot 249,1 \cdot 246$	(245), (027)
1	40	$\{1 \cdot 245,1 \cdot 238$	(423), (046)

cussed further by Long \& Foster (1961). The powder data for $\delta-\mathrm{Al}_{2} \mathrm{O}_{3}$ have recently been indexed on the basis of a large tetragonal cell containing sixteen molecules, but its detailed structure is unknown (Rooksby \& Rooymans, 1961). The structure of $\mathrm{Al}_{2} \mathrm{CO}$ has been studied by Amma \& Jeffrey (196I). That of $\mathrm{Al}_{4} \mathrm{C}_{3}$ was determined by von Stackelberg \& Schnor-
renberg (1934) and has recently been reexamined in connection with its relationship to the aluminum carbonitrides by Jeffrey \& Wu (1961). In their phase equilibrium study, Foster, Long \& Hunter (1956) characterized these compounds by chemical analysis and by X-ray powder diffraction patterns of specimens separated from the matrix of the equilibrium products. A few single crystals of $\mathrm{Al}_{2} \mathrm{CO}$ and $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$ were also sometimes formed from the vapor as a condensate on the reactor walls not in contact with the melt. These crystals were made available to us for crystal structural studies through the courtesy of Dr L. M. Foster of the ALCOA Research Laboratories.

Crystal data

The individual crystals of $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$ are formed as colorless transparent laths up to two mm in length with optical extinction directions at 35° and 55° to their long axis. These directions correspond to two of the orthorhombic axes (a and c respectively) and the third axis is normal to the flat face of the lath. A similar habit is occasionally found in AlN crystals, instead of the more usual hexagonal needles. The length of the lath shaped AlN crystals is also at 35° to one of the principal crystal axes, (i.e. the c axis).

The unit-cell dimensions of $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$ are

$$
\begin{gathered}
a=5 \cdot 76 \pm 0 \cdot 01, b=8 \cdot 537 \pm 0 \cdot 005, \\
c=9 \cdot 121 \pm 0 \cdot 005 \AA, V=448 \cdot 5 \AA^{3}, Z=4, \\
D_{x}=2 \cdot 724 \text { g.cm } .^{-3}, D_{m} \text { (flotation) }=2 \cdot 70 \text { g.cm } .^{-3} .
\end{gathered}
$$

The systematic extinctions are $h k l$ absent for $h+k$ odd and $h 0 l$ absent for l odd, and the corresponding space groups are $C m c 2_{1}, C 2 \mathrm{~cm}, C m c m$. Subsequent structure analysis established $\mathrm{Cmc} 2_{1}$.

The powder data calculated from the single crystal parameters are compared in Table I with those measured from powder specimens as reported by Foster, Long \& Hunter (1956).

Experimental

Equi-inclination Weissenberg photographs were taken about the principal axes with $\mathrm{Cu} K \alpha$ radiation, using crystals which were small trapezoidal plates 0.5 mm in edge and $0 \cdot 1 \mathrm{~mm}$. thick. Four layers about [a], six layers about [b] and the zero layer about [c] were recorded, and from these 275 independent reflexion intensities were obtained by visual estimation on multiple films. These intensities were reduced to structure amplitudes using Shiono's IBM 650 program (1957). No corrections were made for absorption.

The structure determination

A comparison of the calculated distribution of symmetry peaks on the three-dimensional Patterson with those observed led to an unequivocal assignment of

Fig. 1. The Patterson synthesis; (a) section at $x=0$,
the space group as $C m c 2_{1}$. In particular the vector peaks of the type ($0,0, \frac{1}{2}-2 z$) and ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}-2 z$) required by the symmetry $C 2 \mathrm{~cm}$ and Cmcm were not observed.

The four carbon atoms in the cell must therefore lie in special positions on the mirror planes at $x=0$ and this provided a starting point for interpreting the Patterson synthesis, the important sections of which are shown in Fig. 1. It was assumed that the carbon atoms would form four tetrahedral C-Al bonds and the vectors corresponding to a tetrahedron of aluminum atoms centered on an atom in the mirror planes were sought. These were found corresponding to the
four aluminum positions around the carbon shown in Fig. 2. Two of these positions, $\mathrm{Al}(1)$ and $\mathrm{Al}(2)$, also lie on the mirror plane and the other two, $\mathrm{Al}(3)$ and $\mathrm{Al}\left(3^{\prime}\right)$, are in the mirror-related general positions. Oxygen atom positions were then sought so as to complete either a tetrahedral or an octahedral coordination around the aluminum atoms and also satisfy the criterion that the $\mathrm{Al}-\mathrm{O}$ vectors lie on maxima or large positive areas in the Patterson synthesis. In this way, the tetrahedral coordination was deduced and the atomic positions shown in Fig. 2 were obtained.

As a check on this interpretation of the Patterson synthesis, a two-dimensional vector convergence pro-

Fig. 2. The atomic positions deduced from the Patterson synthesis.
cedure was applied to the three-dimensional map by projecting the vectors on (100). The result is shown in Fig. 3. Comparison with Fig. 2 shows that all the atoms except the carbons werc revealed by this method, although the interpretation of the final vector convergence map was made somewhat more obvious by the previous indirect interpretation.

The first trial coordinates from a model based on these interpretations gave reasonable qualitative

Fig. 3. Vector convergence interpretation of Patterson synthesis; (the diagram corresponds to the structure between dotted lines in Fig. 2).
agreement between the observed and calculated structure factors and an overall agreement index of 0.37 . The arbitrary choice of origin in the z direction was made by placing $\mathrm{Al}(3)$ at $z=0$. A three-dimensional Fourier synthesis was then computed and atomic peaks corresponding to all the atoms were observed. The coordinates of these formed the basis for the subsequent refinement stage of the analysis.

The structure refinement

The structure refinement was carried out by differential Fourier synthesis with individual isotropic temperature factors, using Shiono's (1957) IBM 650 programs. The initial refinement cycles were carried out omitting many of the stronger reflexions in the lower $\sin \theta$ range, which were severely affected by extinction errors, as shown by plots such as that in Fig. 4. When these low orders were included at a later state, there were only slight changes in the positional parameters of the atoms but the temperature factors began to diverge, those of the aluminum atoms decreasing and the oxygen and carbon atoms increasing to values of about $B=4 A^{2}$, which seemed unreasonable for a structure of this type.

Fig. 4. $\left|F_{o} \| F_{c}\right|$ versus $\left|F_{c}\right\rangle$ for reflections in range $\sin \theta$ $0 \cdot 3$ to $0 \cdot 4$, showing effect of extinction.

The semi-empirical method of Vand (1955) for the correction of extinction errors was then applied using an IBM 704 least-squares FORTRAN program written for this purpose (Slaughter, 1961). The values obtained for α, β and γ in Vand's relationship

$$
\begin{aligned}
& \quad F_{\text {corr. }}=F_{\text {obs. }} \exp \left(\alpha+\beta F_{\text {calc. }}^{2}+\gamma . L p . F_{\text {calc. }}^{2}\right) \\
& \text { were } \\
& \alpha=0.2714, \beta=0.9692 \times 10^{-6}, \gamma=0.3828 \times 10^{-4} .
\end{aligned}
$$

Sixty-five of the 275 observed amplitudes were significantly increased by the application of this formula. The corrected and uncorrected values are given in the structure factor Table 2. For the values marked

Table 2. Observed and calculated structure factors
First two columns are k and l, and the value for h appears above. The other columns are successively $\left|10 F_{o}\right|$, including extinction corrections; $\left|10 F_{o}\right|$, uncorrected, when different from values used; $\left|10 F_{c}\right| ; 10 A_{c} ; 10 B_{c}$. Values marked * were not observed. Values marked $* *$ were omitted from the refinement calculations

** the extinction corrections were particularly large and it appeared that they had been overcorrected. These terms were given zero weight, by substituting F_{c}, in the refinement calculations which gave the final parameters shown in Table 3. With the corrected amplitudes the isotropic temperature factors for the lighter atoms behaved normally and converged on reasonable values relative to those of the metal atoms. However, because of the necessarily empirical nature of this Vand treatment for extinction and the omission of absorption corrections, the significance of these temperature factors is somewhat uncertain. There was good agreement between the observed and calculated curvatures of the atomic peaks and no evidence of thermal anisotropy. The experimental data did not in fact justify the extension to an anisotropic refinement. The final agreement index with the 265 corrected structure amplitudes used in the refinement was $0 \cdot 11$. Without the Vand corrections it was $0 \cdot 21$, and the

Table 3. Fractional atomic coordinates with standard deviations in \AA (in parenthesis) and isotropic temperature

factors				
Atom	x_{n}	y_{n}	z_{n}	$B\left(\tilde{A}^{2}\right)$
Al_{1}	0.0000	$0.0600(0.004)$	$0.2093(0.004)$	1.60
Al_{2}	0.0000	$0.3983(0.004)$	$0.2903(0.004)$	1.55
Al_{3}	$0.2288(0.004)$	$0.3374(0.004)$	$0.0000(0.004)$	1.65
O_{1}	0.0000	$0.1937(0.009)$	$0.0557(0.009)$	1.55
O_{2}	0.0000	$0.5559(0.009)$	$0.4070(0.008)$	1.55
O_{3}	$0.2564(0.008)$	$0.4340(0.010)$	$0.1786(0.008)$	1.60
C	0.0000	$0.1965(0.010)$	$0.3853(0.012)$	1.60

distribution of agreement versus $\sin \theta$ ranges is shown in Table 4. The interatomic distances and angles in the structure are given in Table 5 and Fig. 5. The mean standard deviations given in parenthesis were calculated by Cruickshank's method using the extinction corrected values of F_{o} and including all observed reflexions.

Table 4. Agreement index, R, for corrected and uncorrected structure amplitudes for various ranges of $\sin \theta$

| $\sin \theta$ | cor-
 rected | uncor-
 rected | | $\overbrace{\text { obs. }}^{R}$ | calc. |
| :---: | :---: | :---: | :---: | :---: | :---: | | Mean $\|F\|$ |
| :---: |
| Noflec-
 tions |
| $0.0-0.2$ |

Description of the structure

The coordination element of the structure is the $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedron. The Al-C distances vary from 1.90 to $1.98 \AA$, and the extreme values are probably significantly different. With one exception the Al-O distances lie in the range of 1.80 to $1.87 \AA$, with a mean of $1.82 \AA$. One distance, that of $\mathrm{Al}(2)-\mathrm{O}(2)$ at $1.72 \AA$, is significantly shorter. These bond lengths are about $0.08 \AA$ less than the sum of the tetrahedral covalent radii, e.g. Al-C 2.03 , Al-0, 1.92 \AA, (Pauling,

Table 5. Interatomic distances and angles in $\mathrm{Al}_{4} \mathrm{C}_{4} \mathrm{O}$

The coordinates given in Table 3 refer to the atoms in the asymmetric unit I, the symmetry related atoms are as follows:

I	x, y, z
II	$-x, y, z$
III	$\frac{2}{2}+x, \frac{1}{2}+y, z$
IV	$\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$
V	$1-x, y, z$
VI	$-x, 1-y, \frac{1}{2}+z$
VII	$\frac{1}{2}+x,-\frac{1}{2}+y, z$
VIII	$\frac{1}{2}-x,-\frac{1}{2}+y, z$
IX	$\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$
X	$-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$
XI	$x, 1-y,-\frac{1}{2}+z$
XII	$-\frac{1}{2}+x,-\frac{1}{2}+y, z$
XIII	$x, \mathrm{I}-y, \frac{1}{2}+z$
XIV	$-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$

Interatomic distances

Aluminum-carbon distances

$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$1.98 \AA$	$(0.012 \AA)$
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	1.93	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	1.90	

Aluminum-oxygen distances

$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{O}_{1}(\mathrm{I})$	1.81	
Al	$(0.010 \AA)$	
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{VIII})$	1.79	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{I})$	$\mathrm{I})$	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	1.82	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{1}(\mathrm{I})$	1.87	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{XI})$	1.81	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	1.83	

Aluminum-aluminum distances

$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})$	$2 \cdot 98 \AA$	$(0 \cdot 006 \AA)$
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{VII})$	$3 \cdot 28$	
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})$	$3 \cdot 32$	
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{VIII})$	$3 \cdot 11$	
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{IV})$	$3 \cdot 20$	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})$	$3 \cdot 00$	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{VI})$	$3 \cdot 24$	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{IV})$	$3 \cdot 19$	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{~V})$	$3 \cdot 12$	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{II})$	$\mathbf{2})$	

Oxygen-oxygen distances

$\mathrm{O}_{1}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{XI})$	$2 \cdot 53 \AA$	$(0 \cdot 013 \AA)$
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	$2 \cdot 77$	
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{VIII})$	$2 \cdot 85$	
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	$2 \cdot 76$	
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{VI})$	$2 \cdot 89$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{II})$	2.95	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{~V})$	$2 \cdot 81$	

Oxygen to carbon distances

$\mathrm{O}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$3 \cdot 01 \AA$	$(0 \cdot 014 \AA)$
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	$3 \cdot 40$	
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$3 \cdot 07$	
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{III})$	$3 \cdot 13$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$3 \cdot 14$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{III})$	$3 \cdot 25$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	$3 \cdot 22$	

Bond angles
Central atom Al_{1}

$\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{1}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{VIII})$	$105 \cdot 0^{\circ}$	$\left(0 \cdot 09^{\circ}\right)$
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$104 \cdot 9$	
$\mathrm{O}_{3}(\mathrm{VIII})-\mathrm{Al}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$118 \cdot 7$	
$\mathrm{O}_{3}(\mathrm{VIII})-\mathrm{Al}_{1}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{XII})$	$103 \cdot 2$	

Central atom Al_{2}		
	$102 \cdot 5^{\circ}$	$\left(0 \cdot 09^{\circ}\right)$
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	$114 \cdot 9$	
$\mathrm{O}_{2}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$113 \cdot 7$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{I})$	$108 \cdot 5$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{II})$		

Central atom Al_{3}

$\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})$	$96 \cdot 6^{\circ}$	$\left(0 \cdot 09^{\circ}\right)$
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	$128 \cdot 7$	
$\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{XI})$	$86 \cdot 0$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	$119 \cdot 2$	
$\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{XI})$	$96 \cdot 8$	
$\mathrm{O}_{2}(\mathrm{XI})-\mathrm{Al}_{3}(\mathrm{I})-\mathrm{C}(\mathrm{IX})$	$114 \cdot 4$	
Central atom O_{1}		

$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})$	$128 \cdot 7^{\circ}$	$\left(0 \cdot 09^{\circ}\right)$
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{1}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{II})$	$89 \cdot 6$	
Central atom O_{2}		
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{2}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{VI})$	$133 \cdot 2^{\circ}$	$\left(0 \cdot 09^{\circ}\right)$
$\mathrm{Al}_{3}(\mathrm{VI})-\mathrm{O}_{2}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{XIII})$	$93 \cdot 3$	

Central atom O_{3}

$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{1}(\mathrm{III})$	$130 \cdot 5^{\circ}$	$\left(0.09^{\circ}\right)$
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{I})$	$110 \cdot 6$	
$\mathrm{Al}_{3}(\mathrm{I})-\mathrm{O}_{3}(\mathrm{I})-\mathrm{Al}_{1}(\mathrm{III})$	$118 \cdot 5$	
Central atom C		

$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})-\mathrm{Al}_{2}(\mathrm{I})$	$99 \cdot 3^{\circ}$	$\left(0 \cdot 10^{\circ}\right)$
$\mathrm{Al}_{1}(\mathrm{I})-\mathrm{C}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{IV})$	$110 \cdot 8$	
$\mathrm{Al}_{2}(\mathrm{I})-\mathrm{C}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{IV})$	$112 \cdot 5$	
$\mathrm{Al}_{3}(\mathrm{IV})-\mathrm{C}(\mathrm{I})-\mathrm{Al}_{3}(\mathrm{XIV})$	$110 \cdot 4$	
The standard deviations are given in parenthesis.		

Fig. 5. Some interatomic distances in the $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$ structure. (The roman figures refer to symmetry related coordinates given in Table 5.)
1960). However, Smith (1954) in summarizing the data on Al-O bond lengths in silicates concluded that the most reliable values were in the range $1 \cdot 75-1 \cdot 79 \AA$. These were for AlO_{4} tetrahedra in which each oxygen was bonded to two aluminum atoms. In this structure each oxygen is bonded to three aluminum atoms and it is interesting to note that the observed mean length is midway between the value of $1.77 \AA$ for the coordination of two and the sum of the tetrahedral covalent radii for four coordinated atoms.

The angles at the center of the $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedra lie within $\pm 8^{\circ}$ of the ideal value for $\mathrm{Al}(1)$ and $\mathrm{Al}(2)$, i.e. ranging from 102° to 119°. For $\mathrm{Al}(3)$ the variation is greater, 86° to 128°. Since the $\mathrm{Al}(3)$ tetrahedra are involved in edge-sharing in the structure, these distortions from the ideal coordination are to be expected.

The coordination around the carbon atoms is also approximately tetrahedral, with an angle variation between 100° to 113°.

The structure can be described in terms of a threedimensional network of $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedra which are associated by sharing edges and corners. In the unit cell of 4 formula units, the eight $\mathrm{Al}(3)$ atoms in the general positions are at the centers of two tetrahedra
which share an $\mathrm{O} \cdots \mathrm{O}$ edge. These double tetrahedra are corner-linked through the carbon atoms to form a continuous chain in the a axis directions, as shown in Fig. 6(a). The chains are then crossed-linked laterally by the aluminum atoms in the special positions $\mathrm{Al}(\mathrm{l})$ and $\mathrm{Al}(2)$, which form corner-linked $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedra, as shown in Fig. 6(b). This arrangement is also shown in the polyhedral diagrams in Fig. 7.

(a)

(b)

- -c

Fig. 6. The structure of $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$. (a) Single chain of tetrahedra, linked alternately across edges and corners in the a axis direction. (b) The lateral arrangement of the tetrahedra.

Some distortions from regularity in both angles and distances are necessary to obtain this packing of the tetrahedra and, as would be expected, the largest of these are associated with the edge-linked pair of tetrahedra. Both the oxygens forming the common edge and the aluminums opposite to the edge have close approaches, $\mathrm{O} \cdots \mathrm{O} 2.53 \AA$, $\mathrm{Al} \cdots \mathrm{Al} 2 \cdot 63 \AA$. The corresponding bond angles are $\mathrm{O}(1) \cdots \mathrm{Al}(3)=86^{\circ}$ and $\mathrm{Al}(3) \cdots \mathrm{O}(\mathrm{l}) \cdots \mathrm{Al}(3)=90^{\circ}$. The other angles in the tetrahedra are accordingly greater than ideal, i.e. $\mathrm{O}(1) \cdots \mathrm{Al}(3) \cdots \mathrm{C}=128^{\circ}$. These short distances are comparable with related situations in other structures, e.g. the $\mathrm{O} \cdots \mathrm{O}$ distance between the shared corners of the octahedra in rutile and the Al \cdot. Al distance across the shared faces in corundum. There is no obvious reason why the $\mathrm{Al}(2) \cdots \mathrm{O}(2)$ bond should be about $0 \cdot 1 \AA$ shorter than the other Al-O bonds. However, a shift in the oxygen atom position such as to increase this distance would lead to a greater departure from tetrahedral angles at the associated

Fig. 7. Polyhedron diagrams of $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)$ tetrahedra in $\mathrm{Al}_{4} \mathrm{O}_{4} \mathrm{C}$. (a) View in c axis direction. (b) View in b axis direction.
aluminum atoms, and this shorter distance may be the consequence of preserving more closely the tetrahedral coordination around the aluminum atoms.

The unique feature of this structure is the edgelinked double tetrahedra shown in Figs. 5, 6 and 7. We have found no counterpart in the AlO_{4} tetrahedra of the aluminates or alumino-silicates, where tetrahedral coordination around the aluminum atoms is quite common but is invariably corner-linked. There appear to be no structures containing analogous $\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{Si}\right)$ groups. In the mineral structures, only the sulfides provide comparable examples of edge-sharing tetrahedra. For example, KFeS_{2} and SiS_{2} have structures with infinite chains of tetrahedra linked through a common edge, but no exact counterpart of the $\left[\mathrm{Al}\left(\mathrm{O}_{3} \mathrm{C}\right)\right]_{n}$ chain with alternate shared edges and corners appears to occur naturally. This suggests that it is the presence of the carbon atoms in the structure which is essentially responsible for the formation of this 'unnatural' atomic arrangement, instead of one of the more common coordination patterns associated with the alumina tetrahedra or octahedra.

This research was supported by the Office of

Ordnance Research, U.S. Army, through grant No. DA-ORD-31-124-61-G63.

References

Amma, E. L. \& Jeffrey, G. A. (1961). J. Chem. Phys. 34. 252.

Foster, L. M., Long, G. \& Hunter, M. S. (1956). J. Amer. Ceram. Soc. 39, 1.
Jeffrey, G. A. \& Wu, V. (1961). Abstract. Pittsburgh Diffraction Conference.
Long, G. \& Foster, L. M. (1961). J. Amer. Ceram. Soc. 44, 255.
Pauling, L. (1960). The Nature of the Chemical Bond. Cornell: University Press.
Rooksby, H. P. \& Rooymans, C. J. M. (1961). Clay Minerals Bull. 4, 234.
Shiono, R. (1957). IBM 650 Library Program File No. 84001, 84002.
Slaughter, M. (1961). Ph.D. Thesis, University of Pittsburgh.
Smith, J. V. (1954). Acta Cryst. 7, 479.
Vand, V. (1955). J. Appl. Phys. 26, 1191.
Von Stackelberg, M. \& Schnorrenberg, E. (1934). Z. Phys. Chem. B, 27, 37.

[^0]: * Present address, Dept. of Geology, University of Missouri.

